
X1E Architecture
An Overview of Phoenix

Trey WhiteTrey White
Jeff KuehnJeff Kuehn

March 27, 2007March 27, 2007

2

Acknowledgements

• Mike Bast, HPC Operations

• Mark Fahey, Scientific Computing

• Richard Mills, Scientific Computing

• Bill Renaud, User Assistance and Outreach

• DOE Office of Advanced Scientific Computing
Research

3

Outline

• X1E architecture

• Using Phoenix

• Tuning is required

4

PhoenixPhoenix

• Cray X1E

• 1024 Multi-Streaming Processors (MSPs)
− 18 GF per MSP (and even faster in single

precision)
− 18 TF peak

• 2 TB globally addressable memory
− 8 GB per uniform-shared-memory node
− 2 GB per MSP

• Powerful interconnect
− Enhanced 3D torus
− Over 10 GB/s measured MPI bandwidth

between MSPs

• Cray X1E

• 1024 Multi-Streaming Processors (MSPs)
− 18 GF per MSP (and even faster in single

precision)
− 18 TF peak

• 2 TB globally addressable memory
− 8 GB per uniform-shared-memory node
− 2 GB per MSP

• Powerful interconnect
− Enhanced 3D torus
− Over 10 GB/s measured MPI bandwidth

between MSPs

5

MSP versus SSP

• Each MSP has four Single-
Streaming Processors (SSPs)

• Which is “the” processor?

• MSP?
− 8-pipe vector processor
− One MPI task
− Automatic multi-streaming

by compiler
− 2 MB shared cache
− Most-common mode for real

applications

• SSP?
− 2-pipe vector processor
− Can be an independent MPI

process (or OpenMP thread)

2 MB cache

SSP SSP SSP SSP

6

MCMs, nodes, and modules! Oh my!

• Node = 4 MSPs with uniform shared memory

• MCM = Multi-Chip Module = 2 MSPs in different nodes

• Module = 1 physical board =
2 nodes
− Nodes are interleaved in

hardware
− Separate memory (still

globally addressable)
− Shared memory bandwidth
− Shared interconnect

bandwidth

7

Interconnect

• Enhanced 3D torus
− Fully connected in one dimension

• High bandwidth
− 10.8 GB/s measured MPI point-to-point
− Takes four MSPs to saturate module bandwidth

• Globally addressable memory
− Load/store memory on any node

• Remote address translation
− On memory’s node, not at processor
− Avoids TLB misses
− Requires contiguous processors (default)
− This is why jobs migrate

• Cache coherent
− Only cache local memory

8

Many levels of parallelism

• Vectorization within SSP

• Multistreaming within MSP

• OpenMP within node (not recommended)

• Between nodes (or processors)
− MPI-1 two-sided message passing
− MPI-2 one-sided communication
− SHMEM one-sided communication
− Co-Array Fortran remote memory
− Direct load/store using pointers

9

X1E strengths

• Fast vector processors
− 18 GF double-precision peak (MSP), 15.3 GF DGEMM
− Double-rate single precision

• High memory bandwidth (local and remote)
− Stream triad of 32.7 GB/s on one MSP
− Stream triad of 15.4 GB/s/MSP fully loaded
− 10.8 GB/s MPI ping pong
− 108 GB/s Parallel Transpose
− Good at stride-1, strided, and random access

• Latency tolerance
− Vectorization hides (global and local) memory latency

10

X1E weaknesses

• Limited memory per MSP

• Very slow scalar processor
− 565 MHz
− 2-way superscalar
− Simple design (compared to Opteron)

• Tuning is required

11

Outline

• X1E architecture

• Using Phoenix

• Tuning is required

12

Using Phoenix

• http://nccs.gov
Resources

Cray X1E Phoenix

http://nccs.gov

13

Login to Robin1

• 4-processor Opteron system with 32 GB of memory
− “Robin” will point to Robin1 in a week or so

• Cross compile for Phoenix
− Up to 30x faster than on Phoenix

• Phoenix “/tmp/work” mounted over NFS
• Most Phoenix “man” pages

• Submit and monitor jobs
− All PBS and Moab commands
− Even “qsub -I”; shell runs remotely on Phoenix
− Moab command are slow; Phoenix is the server

• Typical Linux editors and tools
− Emacs, Subversion, etc.
− See “module avail”

• Software auto-configuration can be tricky

14

Compiling

• Avoid “#ifdef CRAY”
− Cray X1E too different from past Cray’s (more like other vendors’)
− Default type sizes are not all 64 bits

• Use default optimization
− Don’t try to fix performance problems with higher optimization

• Always generate loopmarks (“-rm”, “-h list=a”)
• Often generate instrumented executables (“pat_build”)
• Try newer (or older) compilers with “module swap”

− module avail PrgEnv
− module swap PrgEnv PrgEnv.5509

• “-O/h gen_private_callee” to generate procedure interfaces for
calling within CSD streams

• “-Z” for Co-Array Fortran (“-h upc” for UPC)
• “-O/h command” for serial tools on Phoenix OS nodes

− Make sure “configure” uses this (when using Phoenix directly)

15

Batch jobs

• Scheduling policy not changing (unlike Jaguar)

• Always specify requirements in MSPs
− “-l mppe=N”
− For SSP jobs, divide SSP count by four
− Jobs using more than one node (4 MSPs) must request an integer

multiple of 8 MSPs
• To line up on module boundaries for remote address

translation

• For more memory
− Tell batch system using MSP request (not memory request)
− Memory/(1.7 GB) = number of MSPs to request
− Tell “aprun” memory requirement using “-m”
− May need to set environment variables
− See “man 7 memory” on Phoenix

16

Debugging

• Avoid “-g”
− Horrible performance
− Bugs often go into hiding
− All levels of “-G” affect optimization

• Always set “TRACEBK” environment variable
− setenv TRACEBK 30
− export TRACEBK=30

• Turn on core files: “aprun -c core=unlimited”
− Only in “/tmp/work”!

• View core files with “totalview” or “totalviewcli”

• Check traceback for hints on where to look
− This says to look at core file #299:
Traceback for process 64311(ssp mode) apid 64184.229 on node 7

• See online docs to try interactive debugging

17

Outline

• X1E architecture

• Using Phoenix

• Tuning is required

18

Tuning is required

• Tuning priorities

• Vectorization

• Multistreaming

• Communication

• OpenMP?

• Tuning strategy

19

Tuning priorities

• Vectorization (10x)

• Multistreaming (4x)

• Low-latency communication (2x)

• Register blocking (<2x)

• Cache blocking?

20

Vectorization

• One vector instruction = many loop iterations

• Needs enough loop iterations
− 64 (multistreamed) or 256 on X1E
− Fewer iterations = lower efficiency

• No procedure calls

• No loop-carried data dependencies
− Some exceptions (reductions)

21

Vectorization: What the compiler can do

• Array notation

• Scalar temporary variables

• Re-arrange loop nests

• Reductions, (un)pack, scatter/gather

• Fuse loops and array statements

• Inline procedures (one level down)

• “if” statements within loops
− Vector masks, some loss of efficiency

22

Vectorization: What compilers can’t do

• Make short vector loops efficient

• Make stride-1 (or -0) scatter/gather efficient

• Know that index arrays don’t repeat
− do j = 1, n

x(i(j)) = x(i(j)) + …

• Effectively inline many levels down

23

Vectorization: How you can help

• Assert that a loop is concurrent (index arrays don’t repeat)
− !dir$ concurrent

− #pragma _CRI concurrent

• Assert that an index array is a permutation
− !dir$ permutation(i)

• Change array temporaries to scalar
− Can remove dependencies

• Break up the big outer loop
− To move it inside multiple inner loops

• Move loops inside procedure calls

• Move I/O outside of compute loops

24

Vectorization: Loopmark listings

• What vectorized, what didn’t, and why?

679. ndayc = 0

680. Vs------------< do i=1,ncol

681. Vs if (coszrs(i) > 0.0_r8) then

682. Vs ndayc = ndayc + 1

683. Vs idayc(ndayc) = i

684. Vs end if

685. Vs------------> end do

ftn-6205 f90: VECTOR File = radcswmx.F90, Line = 680

A loop starting at line 680 was vectorized with a single vector iteration.

25

Beware of partial vectorization

6. Vp----< DO i = 1,n

7. VP r-<> e(ix1(i)) = e(ix1(i)) - a(i)

8. VP----> END DO

f90-6371 f90: VECTOR File = gs-2.f, Line = 6

A vectorized loop contains potential conflicts due to indirect

addressing at line 7, causing less efficient code to be

generated.

f90-6204 f90: VECTOR File = gs-2.f, Line = 6

A loop starting at line 6 was vectorized.

26

Fix with directives
6. !dir$ concurrent

7. MV--< DO i = 1, n

8. MV e(ix1(i)) = e(ix1(i)) - a(i)

9. MV--> END DO

f90-6203 f90: VECTOR File = gs-2.f, Line = 7

A loop starting at line 7 was vectorized because an IVDEP

or CONCURRENT compiler directive was specified.

f90-6203 f90: STREAM File = gs-2.f, Line = 7

A loop starting at line 7 was streamed because an IVDEP

or CONCURRENT compiler directive was specified.

Declaring ix1 as a permutation may be even better

27

Multistreaming

Compiler can multistream:

• Most vectorizable loops

• Most array syntax

• Nested loops with no
dependencies

• Loop nests for
vectorization within
multistreaming

• Short loops

Compiler can’t:

• Multistream loops with:
− Procedure calls
− Dependencies

• Always choose the right
loop to vectorize versus
multistream

28

Multistreaming: How you can help

• Directives, directives, directives
− !dir$ concurrent
− !dir$ preferstream
− !dir$ prefervector
− !dir$ ssp_private

(procedure calls)

• Cray Streaming Directives (CSDs)
− Much like OpenMP

29

I/O inside a loop

6. 1--< do i = 1, nx

7. 1 c(i) = a(i) * b(i)

8. 1 write(8,'(1x,f12.4)') c(i)

9. 1--> end do

ftn-6286 ftn: VECTOR File = io1.ftn, Line = 6

A loop starting at line 6 was not vectorized because it contains

input/output operations at line 8.

ftn-6709 ftn: STREAM File = io1.ftn, Line = 6

A loop starting at line 6 was not multi-streamed because it contains

input/output operations.

30

Fixed

7. MVr--< do i = 1, nx

8. MVr c(i) = a(i) * b(i)

9. MVr--> end do

10.

11. write(8,'(1x,f12.4)') (c(i),i=1,nx)

ftn-6005 ftn: SCALAR File = io2.ftn, Line = 7

A loop starting at line 7 was unrolled 2 times.

ftn-6204 ftn: VECTOR File = io2.ftn, Line = 7

A loop starting at line 7 was vectorized.

ftn-6601 ftn: STREAM File = io2.ftn, Line = 7

A loop starting at line 7 was multi-streamed.

31

Communication

• Use one-sided communication for latency-sensitive
operations

• MPI-2 library
− Complicated interface
− No guaranteed progress without synchronization

• SHMEM library
− Vendor specific

• Co-Array Fortran
− Lowest latency
− Currently vendor specific
− Part of next Fortran language standard

• Intermix with each other and MPI-1

32

OpenMP?

• If OpenMP used for different parallelism than MPI
− Probably the same parallelism as for vectorization and

multistreaming
− Typically not enough parallel work for all three
− OpenMP is least efficient of the three

• If OpenMP used for same parallelism as MPI
− Useful for reducing message volume and aggregating

messages
− But one MSP can’t saturate the network
− Little reason to aggregate

• Don’t bother with OpenMP on Phoenix

33

Tuning strategy

• Functional port

• Iterate
− Loopmark and profile
− Vectorize and multistream

• Tune communication

34

Profiling

• Instrument executable with “pat_build”

• Run and generate performance report
− Together: “pat_run”
− Separately: “aprun” followed by offline “pat_report”

on resulting “.xf” file

• Use report to locate bottlenecks, then use loopmark
listings to diagnose problems and solutions
− Use call-tree reports to find which calls were expensive
− Apprentice2 tool provides graphical browsing

• For aggregate hardware-counter statistics, use
“pat_hwpc”

35

More information

• This information and more at:
http://nccs.gov Resources Cray X1E Phoenix
http://info.nccs.gov Cray X1E Phoenix
http://info.nccs.gov/resources/phoenix

• Cray documentation at http://docs.cray.com
− Cray X1 Series System Overview
− Cray Fortran, C/C++ reference manuals
− Migrating Applications to the Cray X1 Series Systems
− Optimizing Applications on Cray Series Systems
− Excellent search capability

• E-mail us: help@nccs.gov

http://nccs.gov
http://infonccs.gov
http://info.nccs.gov/resources/phoenix
http://docs.cray.com/
mailto:help@nccs.gov

	X1E Architecture�An Overview of Phoenix
	Acknowledgements
	Outline
	Phoenix
	MSP versus SSP
	MCMs, nodes, and modules! Oh my!
	Interconnect
	Many levels of parallelism
	X1E strengths
	X1E weaknesses
	Outline
	Using Phoenix
	Login to Robin1
	Compiling
	Batch jobs
	Debugging
	Outline
	Tuning is required
	Tuning priorities
	Vectorization
	Vectorization: What the compiler can do
	Vectorization: What compilers can’t do
	Vectorization: How you can help
	Vectorization: Loopmark listings
	Beware of partial vectorization
	Fix with directives
	Multistreaming
	Multistreaming: How you can help
	I/O inside a loop
	Fixed
	Communication
	OpenMP?
	Tuning strategy
	Profiling
	More information

